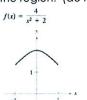
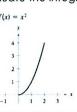
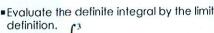
Unit 4 day 4

Set up a definite integral that yields the area of the region. (do no evaluate the integral)





Homework Check



 $\int_{-2}^{3} x \, dx$

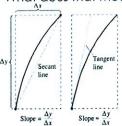
Sketch the region given by the definite integral. Then use a geometric formula to evaluate the integral.

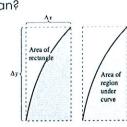
Fundamental Theorem of Calculus

You have now been introduced to the two major branches of calculus: differential calculus (introduced with the tangent line problem) and integral calculus (introduced with the area problem). At this point, these two problems might seem unrelated—but there is a very close connection. The connection was discovered independently by Isaac Newton and Gottfried Leibniz and is stated in a theorem that is appropriately called the Fundamental Theorem of Calculus.

Differentiation and Integration are inverse operations

■What does that mean?





Area = $\Delta y \Delta x$

So in short Definite integrals can make the area under a curve problems much easier

THEOREM 4.9 THE FUNDAMENTAL THEOREM OF CALCULUS

If a function f is continuous on the closed interval [a,b] and F is an antiderivative of f on the interval [a,b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

Two important notes

For instance, to evaluate $\int_1^3 x^3 dx$, you can write

$$\int_{1}^{3} x^{3} dx = \frac{x^{4}}{4} \Big]_{1}^{3} = \frac{3^{4}}{4} - \frac{1^{4}}{4} = \frac{81}{4} - \frac{1}{4} = 20.$$

It is not necessary to include a constant of integration C in the antiderivative

$$\int_a^b f(x) \, dx = \left[F(x) + C \right]_a^b$$

Area = ΔyΔx

Evaluate each definite integral
$$\int_{1}^{2} (x^{2} - 3) dx = \frac{x^{3}}{3} - 3x \Big|_{1}^{2} = \frac{\lambda^{3}}{3} - 3(2)\Big|_{2}^{2}$$

$$\int_{1}^{4} 3\sqrt{x} dx \qquad \left[\frac{1^{3}}{3} - 3(1)\right]_{2}^{2}$$

$$3 \int_{1}^{4} x^{\frac{1}{2}} dx = \frac{3x^{\frac{3}{2}}}{\frac{3}{2}} \Big|_{1}^{4}$$

$$\frac{8}{3} - 6\Big|_{2}^{4} \Big|_{3}^{4} - 3(1)\Big|_{2}^{2}$$

$$2 \int_{1}^{4} x^{\frac{1}{2}} dx = \frac{3x^{\frac{3}{2}}}{\frac{3}{2}} \Big|_{1}^{4}$$

$$\frac{8}{3} - 6\Big|_{2}^{4} \Big|_{3}^{4} - 3(1)\Big|_{2}^{4}$$

Evaluate each definite integral
$$\int_{1}^{2} (x^{2} - 3) dx = \frac{\chi^{3}}{3} - 3\chi$$

$$\int_{1}^{4} 3\sqrt{x} dx$$

$$\frac{3\chi^{3/2}}{3/4} \Big|_{1}^{4}$$
Evaluate each definite integral
$$\int_{0}^{2} (2x^{2} - 3x + 2) dx = \frac{2\chi^{3}}{3} - \frac{3\chi^{2}}{3} + 2\chi$$

$$\int_{0}^{4} (2x^{2} - 3x + 2) dx = \frac{2\chi^{3}}{3} - \frac{3\chi^{2}}{3} + 2\chi$$

$$\int_{0}^{4} 3\sqrt{x} dx$$

$$\int_{0}^{\pi/4} \sec^{2} x dx$$

$$\int_{0}^{\pi/4} \sec^{2} x dx$$

$$\int_{0}^{\pi/4} \cot x \left[\frac{\pi}{4} - \frac{2}{4} \cot 0 \right]$$

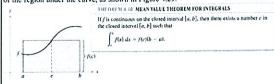
$$\int_{0}^{\pi/4} \cot x \left[\frac{\pi}{4} - \frac{2}{4} \cot 0 \right]$$

$$\int_{0}^{\pi/4} \cot x \left[\frac{\pi}{4} - \frac{2}{4} \cot 0 \right]$$

$$\int_{0}^{\pi/4} \cot x \left[\frac{\pi}{4} - \frac{2}{4} \cot 0 \right]$$

Evaluate each definite integral $\int_{2}^{5} (-3x+4) dx - \frac{3x^{2}}{2} + 4x \Big|_{2}^{5}$

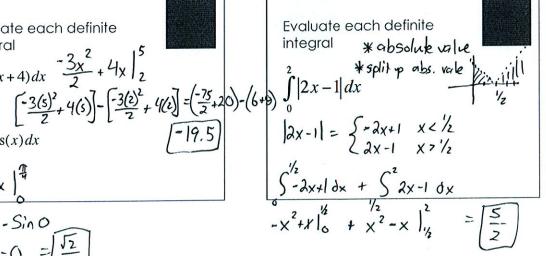
In Section 4.2, you saw that the area of a region under a curve is greater than the area of an inscribed rectangle and less than the area of a circumscribed rectangle. The Mean Value Theorem for Integrals states that somewhere "between" the inscribed and circumscribed rectangles there is a rectangle whose area is precisely equal to the area of the region under the curve, as shown in Figure 4.29.



 $f(c)(b-a)=\int_{-a}^{b}f(x)\,dx$

$$\frac{\int_{a}^{b} f(x) dx}{(b-a)} = \frac{f(c)(b-a)}{(b-a)}$$

$$\frac{\int_{a}^{b} f(x) dx}{(b-a)} = f(c)$$



Find the value(s) of c guaranteed by the Mean Value Theorem for integrals for the function given the interval

$$f(x) = 4x^{2} + 3 \qquad [0, 3]$$

$$\int_{0}^{3} (4x^{2} + 3) dx = \frac{4x^{3}}{3} + 3x \Big|_{0}^{3}$$

$$\int_{0}^{2} \frac{4(3)^{3}}{3} + 3(3) \Big] \cdot (0)$$

36+9-0 = 45

$$\frac{45}{3.0} = 15 = f(c)$$

$$\frac{15}{3} = 4c^{2} + \frac{3}{3}$$

$$\frac{12}{3} = 4c^{2}$$

$$\frac{12}{3} = 4c^{2}$$

$$\frac{13}{3} = \sqrt{2}$$

$$\int_{a}^{b} f(x)dx = f(c)(b-a) \qquad \int_{a}^{-\frac{q}{2}} \frac{|^{3}}{|^{2}} = \frac{-\frac{q}{2}}{|^{2}} - \frac{-\frac{q}{2}}{|^{2}} = \frac{-\frac{1}{2}}{|^{2}} + \frac{q}{2} = 4$$

$$\int_{a}^{3} \frac{|^{3}}{|^{2}} dx \qquad \frac{|^{2}}{|^{2}} |^{3} = \frac{|^{2}}{|^{2}} - \frac{|^{2}}{|^{2}} = -\frac{|^{2}}{|^{2}} + \frac{|^{2}}{|^{2}} = 4$$

Find the value(s) of c guaranteed by the Mean Value Theorem for integrals for the function given the interval

$$f(x) = \frac{9}{x^3}$$

$$\frac{4}{2} = f(c)$$

$$\frac{2}{2} = \frac{9}{x^3}$$

$$\frac{9}{2} = \frac{2x^3}{x^3}$$

$$\frac{3}{2} = \sqrt[3]{x}$$

$$x = \sqrt[3]{\frac{9}{2}}$$

$$\frac{1}{2}$$
 $\frac{2}{3}$ $\sqrt{3}$ $\sqrt{3}$

Average Value of a Function

The value of f(c) given in the Mean Value Theorem for Integrals is called the average

DEFINITION OF THE AVERAGE VALUE OF A FUNCTION ON AN INTERVAL

If f is integrable on the closed interval [a, b], then the average value of f on

$$\frac{1}{b-a}\int_a^b f(x)\,dx.$$

Find the average value of the function over the given interval

$$\blacksquare f(x) = 3x^2 - 2x$$
 [1, 4]

$$\frac{1}{3} \left[\frac{3x^3}{3} - \frac{2x^2}{2} \right]^4$$

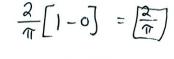
Find the average value of the function over the given interval

10/16/14

$$=f(x) = cos(x) [0, \pi/2]$$

$$\frac{1}{\frac{\Lambda}{2}}\left(\sin\left(x\right)\right)_{0}^{\frac{\pi}{2}}=\frac{2}{\pi}\left[\sin\frac{\pi}{2}-\sin0\right]$$

$$\frac{1}{3} \left[\times^{3} - \times^{2} \right]^{7} \quad \frac{1}{3} \left[\left[\left(4 \right)^{3} - \left(4 \right)^{2} \right] - \left(1^{3} - 1^{2} \right) \right] \\ \quad \frac{1}{3} \left(64 - 16 - \left(1 - 1 \right) \right) \quad \frac{1}{3} \left(48 \right) = 16$$



Find the average value of the function over the given interval

$$f(x) = \frac{4(x^2 + 1)}{x^2}$$
 [1, 3]

$$\frac{1}{3-1} \int_{0}^{3} \frac{4x^{2}}{x^{2}} + \frac{4}{x^{2}} dx$$

$$\frac{1}{2} \int_{0}^{3} (4 + 4x^{-2}) dx$$

$$\frac{1}{2} \left[4x + \frac{4x^{-1}}{x} \right]^{3} = \frac{1}{2} \left[4x + \frac{-4}{x} \right]^{3}$$

$$\frac{1}{2}\left[4(3) + \frac{-4}{3}\right] - \left(4(3) + \frac{-4}{1}\right) = \frac{1}{2}\left(\frac{22}{3} - 0\right) = \frac{22}{6} = \frac{10}{3} \approx 3.6$$

EXERCISES FOR SECTION 4.4

Graphical Reasoning In Exercises 1-4, use a graphing utility to graph the integrand. Use the graph to determine whether the definite integral is positive, negative, or zero.

$$1. \int_0^{\pi} \frac{4}{x^2 + 1} \, dx$$

2.
$$\int_0^{\pi} \cos x \, dx$$

1.
$$\int_0^{\pi} \frac{4}{x^2 + 1} dx$$
 2. $\int_0^{\pi} \cos x \, dx$ 3. $\int_{-2}^2 x \sqrt{x^2 + 1} \, dx$ 4. $\int_{-2}^2 x \sqrt{2 - x} \, dx$

4.
$$\int_{-2}^{2} x \sqrt{2-x} \, dx$$

In Exercises 5-26, evaluate the definite integral of the algebraic function. Use a graphing utility to verify your result.

$$5. \int_0^1 2x \, dx$$

6.
$$\int_{2}^{7} 3 \, dv$$

$$(7.)$$
 $\int_{-1}^{0} (x-2) dx$

8.
$$\int_{3}^{5} (-3v + 4) dv$$

$$9. \int_{-1}^{1} (t^2 - 2) dt$$

$$7. \int_{-1}^{0} (x-2) dx$$

$$8. \int_{2}^{5} (-3v+4) dv$$

$$9. \int_{-1}^{1} (t^{2}-2) dt$$

$$10. \int_{1}^{3} (3x^{2}+5x-4) dx$$

$$11. \int_0^1 (2t-1)^2 dt$$

12.
$$\int_{-1}^{1} (t^3 - 9t) dt$$

(13)
$$\int_{1}^{2} \left(\frac{3}{x^2} - 1\right) dx$$

14.
$$\int_{-2}^{-1} \left(u - \frac{1}{u^2} \right) du$$

$$(15.) \int_{1}^{4} \frac{u-2}{\sqrt{u}} du$$

16.
$$\int_{0}^{3} v^{1/3} dv$$

17.
$$\int_{-1}^{1} (\sqrt[3]{t} - 2) dt$$
 18. $\int_{1}^{8} \sqrt{\frac{2}{x}} dx$

18.
$$\int_{-8}^{3} \sqrt{\frac{2}{r}} dx$$

19.
$$\int_0^1 \frac{x - \sqrt{x}}{3} dx$$

19.
$$\int_{0}^{1} \frac{x - \sqrt{x}}{3} dx$$
 20. $\int_{0}^{2} (2 - t) \sqrt{t} dt$

21.
$$\int_{-1}^{0} (t^{1/3} - t^{2/3}) dt$$
 22.
$$\int_{-8}^{-1} \frac{x - x^2}{2\sqrt[3]{x}} dx$$

22.
$$\int_{-8}^{-1} \frac{x - x^2}{2\sqrt[3]{x}} dx$$

23.
$$\int_0^3 |2x - 3| \, dx$$

23.
$$\int_{0}^{3} |2x - 3| dx$$
 24.
$$\int_{0}^{4} (3 - |x - 3|) dx$$

25.
$$\int_0^3 |x^2 - 4| \ dx$$

25.
$$\int_{0}^{3} |x^{2} - 4| dx$$
 26.
$$\int_{0}^{4} |x^{2} - 4x + 3| dx$$

In Exercises 27–32, evaluate the definite integral of the trigonometric function. Use a graphing utility to verify your result.

27.
$$\int_0^{\pi} (1 + \sin x) dx$$
 28.
$$\int_0^{\pi/4} \frac{1 - \sin^2 \theta}{\cos^2 \theta} d\theta$$

28.
$$\int_0^{\pi/4} \frac{1-\sin^2\theta}{\cos^2\theta} d\theta$$

$$29. \int_{-\pi/6}^{\pi/6} \sec^2 x \, dx$$

29.
$$\int_{-\pi/6}^{\pi/6} \sec^2 x \, dx$$
 30.
$$\int_{\pi/4}^{\pi/2} (2 - \csc^2 x) \, dx$$

31.
$$\int_{-\pi/3}^{\pi/3} 4 \sec \theta \tan \theta d\theta$$
 32. $\int_{-\pi/2}^{\pi/2} (2t + \cos t) dt$

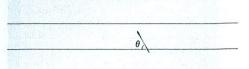
32.
$$\int_{0}^{\pi/2} (2t + \cos t) dt$$

33. Depreciation A company purchases a new machine for which the rate of depreciation is $dV/dt = 10,000(t - 6), 0 \le t \le 5$, where V is the value of the machine after t years. Set up and evaluate the definite integral that yields the total loss of value of the machine over the first 3 years.

34. Buffon's Needle Experiment A horizontal plane is ruled with parallel lines 2 inches apart. If a 2-inch needle is tossed randomly onto the plane, the probability that the needle will touch a line is

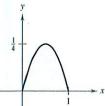
$$P = \frac{2}{\pi} \int_0^{\pi/2} \sin \theta \, d\theta$$

where θ is the acute angle between the needle and any one of the parallel lines. Find this probability.

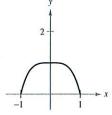


In Exercises 35-40, determine the area of the indicated region.

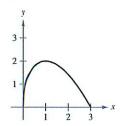
35.
$$y = x - x^2$$



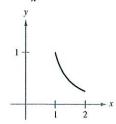
36.
$$y = 1 - x^4$$



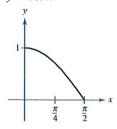
37.
$$y = (3 - x)\sqrt{x}$$



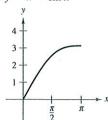
38.
$$y = \frac{1}{x^2}$$



39.
$$y = \cos x$$



40. $y = x + \sin x$



In Exercises 41-44, find the area of the region bounded by the graphs of the equations.

41.
$$y = 3x^2 + 1$$
, $x = 0$,

$$r = 0$$

$$x = 2, y = 0$$

42.
$$y = 1 + \sqrt[3]{x}$$
 $x = 0$, $x = 8$, $y = 0$

$$r = 0$$

$$r = 8$$

43.
$$y = x^3 + x$$
, $x = 2$,

$$v = 0$$

44.
$$y = -x^2 + 3x$$
.

$$y = 0$$

Function (45) $f(x) = x - 2\sqrt{x}$ [0, 2] 46. $f(x) = \frac{9}{x^3}$ [1, 3] (47) $f(x) = 2 \sec^2 x$ [-\pi/4, \pi/4] 48. $f(x) = \cos x$ [-\pi/3, \pi/3]

In Exercises 49–52, find the average value of the function over the interval and all values of x in the interval for which the function equals its average value.

Function	Interval	
$(49.) f(x) = 4 - x^2$	[-2, 2]	
$50.\ f(x) = \frac{4(x^2+1)}{x^2}$	[1, 3]	
$(51.)f(x) = \sin x$	$[0, \pi]$	
$52. f(x) = \cos x$	$[0, \pi/2]$	

Getting at the Concept

- 53. State the Fundamental Theorem of Calculus.
- 54. The graph of f is given in the figure.
 - (a) Evaluate $\int_{1}^{7} f(x) dx$.
 - (b) Determine the average value of f on the interval [1, 7].
 - (c) Determine the answers to parts (a) and (b) if the graph is translated two units upward.

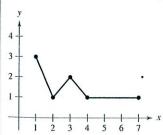


Figure for 54

Figure for 55-60

In Exercises 55–60, use the graph of f shown in the figure. The shaded region A has an area of 1.5, and $\int_0^6 f(x) dx = 3.5$. Use this information to fill in the blanks.

55.
$$\int_{0}^{2} f(x) dx =$$
56. $\int_{2}^{6} f(x) dx =$
57. $\int_{0}^{6} |f(x)| dx =$
58. $\int_{0}^{2} -2f(x) dx =$
59. $\int_{0}^{6} [2 + f(x)] dx =$

60. The average value of f over the interval [0, 6] is

- 61. Force The force F (in newtons) of a hydraulic cylinder in a press is proportional to the square of $\sec x$, where x is the distance (in meters) that the cylinder is extended in its cycle. The domain of F is $[0, \pi/3]$, and F(0) = 500.
 - (a) Find F as a function of x.
 - (b) Find the average force exerted by the press over the interval $[0, \pi/3]$.

285

62. Blood Flow The velocity v of the flow of blood at a distance r from the central axis of an artery of radius R is

$$v = k(R^2 - r^2)$$

where k is the constant of proportionality. Find the average rate of flow of blood along a radius of the artery. (Use 0 and R as the limits of integration.)

63. Respiratory Cycle The volume V in liters of air in the lungs during a 5-second respiratory cycle is approximated by the model

$$V = 0.1729t + 0.1522t^2 - 0.0374t^3$$

where *t* is the time in seconds. Approximate the average volume of air in the lungs during one cycle.

64. Average Profit A company introduces a new product, and the profit in thousands of dollars over the first 6 months is approximated by the model

$$P = 5(\sqrt{t} + 30), \quad t = 1, 2, 3, 4, 5, 6.$$

(a) Use the model to complete the table and use the entries to calculate (arithmetically) the average profit over the first 6 months.

t	1	2	3	4	5	6
P						

- (b) Find the average value of the profit function by integration and compare the result with that in part (a). (Integrate over the interval [0.5, 6.5].)
- (c) What, if any, is the advantage of using the approximation of the average given by the definite integral? (Note that the integral approximation utilizes all real values of t in the interval rather than just integers.)
- 65. Average Sales A company fit a model to the monthly sales data of a seasonal product. The model is

$$S(t) = \frac{t}{4} + 1.8 + 0.5 \sin\left(\frac{\pi t}{6}\right), \quad 0 \le t \le 24$$

where S is sales (in thousands) and t is time in months.

- (a) Use a graphing utility to graph $f(t) = 0.5 \sin(\pi t/6)$ for $0 \le t \le 24$. Use the graph to explain why the average value of f(t) is 0 over the interval.
- (b) Use a graphing utility to graph S(t) and the line g(t) = t/4 + 1.8 in the same viewing window. Use the graph and the result of part (a) to explain why g is called the *trend line*.

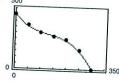
81. Suppose there are n rows in the figure. The stars on the left total $1+2+\cdots+n$, as do the stars on the right. There are n(n + 1) stars in total. So,

$$2[1 + 2 + \cdots + n] = n(n + 1)$$

$$1 + 2 + \cdots + n = \frac{n(n+1)}{2}$$
.

83. (a) $y = (-4.09 \times 10^{-5})x^3 + 0.016x^2 - 2.67x + 452.9$

(c) 76,897 square feet

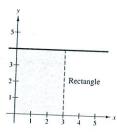


Section 4.3 (page 272)

- 1. $2\sqrt{3} \approx 3.464$ 3. 36 5. 0 7. $\frac{10}{3}$

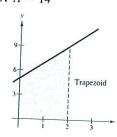
- 9. $\int_{-1}^{5} (3x+10) dx$ 11. $\int_{0}^{3} \sqrt{x^2+4} dx$

- 13. $\int_0^5 3 dx$ 15. $\int_{-4}^4 (4 |x|) dx$ 17. $\int_{-2}^2 (4 x^2) dx$
- 19. $\int_0^{\pi} \sin x \, dx$ 21. $\int_0^2 y^3 \, dy$
- **23.** A = 12

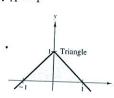


Triangle

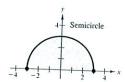
27. A = 14



29. A = 1



31. $A = \frac{9\pi}{2}$



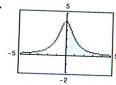
- 33. -6
 - **35.** 24
- 37. -10
- 39. 16
- **41.** (a) 13 (b) -10 (c) 0
- (d) 30
- **43.** (a) 8 (b) -12 (c) -4
- (d) 30

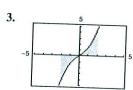
- **45.** (a) $-\pi$ (b) 4 (c) $-(1+2\pi)$ (d) $3-2\pi$ (e) $5 + 2\pi$ (f) $23 - 2\pi$
- **47.** $\sum_{i=1}^{n} f(x_i) \Delta x > \int_{1}^{5} f(x) dx$ **49.** $\sum_{i=1}^{n} f(x_i) \Delta x < \int_{1}^{5} f(x) dx$
- **51.** No. There is a discontinuity at x = 4.
- 53. a 55. d
- 57. 11 4 12 20 L(n)3.6830 3.9956 4.0707 4.1016 4.1177 M(n)4.3082 4.2076 4.1838 4.1740 4.1690 R(n)3.6830 3.9956 4.0707 4.1016 4.1177

n	4	8	12	16	20
L(n)	0.5890	0.6872	0.7199	0.7363	0.7461
M(n)	0.7854	0.7854	0.7854	0.7854	0.7854
R(n)	0.9817	0.8836	0.8508	0.8345	0.8247

- **61.** True 63. True
- **65.** False: $\int_{-2}^{2} (-x) dx = -2$ **67.** 272
- 69. No. No matter how small the subintervals, the number of both rational and irrational numbers within each subinterval is infinite and $f(c_i) = 0$ or $f(c_i) = 1$.
- 71. $\frac{1}{3}$

Section 4.4 (page 284)





- Positive
- 5. 1 (7) $-\frac{5}{2}$ (9) $-\frac{10}{3}$ (1) $\frac{1}{3}$
- - 23. $\frac{9}{2}$ 25. $\frac{23}{3}$

Zero

- 17. -4 19. $-\frac{1}{18}$ 21. $-\frac{27}{20}$ 27. $\pi + 2$ 29. $\frac{2\sqrt{3}}{3}$ 31. 0
- 33. $\int_{0}^{3} 10,000(t-6) dt = -\$135,000$ 35. $\frac{1}{6}$ 37. $\frac{12\sqrt{3}}{5}$ 39. 1 41. 10 43. 6
- (45) 0.4380, 1.7908 (47) $\pm \arccos \frac{\sqrt{\pi}}{2} \approx \pm 0.4817$
- (49) Average value = $\frac{8}{3}$
- (51) Average value = $\frac{2}{3}$
- $x = \pm \frac{2\sqrt{3}}{3} \approx \pm 1.155$
- $x \approx 0.690, x \approx 2.451$
- 53. The Fundamental Theorem of Calculus states that if a function f is continuous on [a, b] and F is an antiderivative of f on [a, b], then $\int_a^b f(x) dx = F(b) - F(a)$.